
(NASA-C -1 3 4 3 3 2 ) SU C ELC EICl 74-2830

P2OPERTIES EXPEITEiT. PAaT 2: THEOZY

OF PADIO-EQUENCY INTERFEIOMETRY IN Unclas

GEOPHYSICAL (Massachusetts Inst. of Tech.) 
Incas

wr3p HC $.3/3 42569

J 
.* A



CSR-TR-74-2

SURFACE ELECTRICAL PROPERTIES EXPERIMENT

FINAL REPORT, PART 2 OF 3

NASA CONTRACT NAS 9-11540

APRIL 1974



SURFACE ELECTRICAL PROPERTIES EXPERIMENT

Final Report, Part 2 of 3

NASA Contract NAS 9-11540

Theory of Radio-Frequency Interferometry

in

Geophysical Subsurface Probing

April 1974

Massachusetts Institute of Technology

Center for Space Research
Cambridge, Massachusetts 02139

Prepared by:

J. A. Kong and L. Tsang



Theory of Radio-Frequency Interferometry in

Geophysical Subsurface Probing

Table of Contents

Foreword

Acknowledgement

Chapter 1. Introduction

Chapter 2. Theoretical Formulation

Chapter 3. Dipole Antennas on a Half Space Medium

Chapter 4. Geometrical Optics Approach

Chapter 5. Mode Approach

Chapter 6. Numerical Approach

Chapter 7. Discussions

References

Appendices



Preface

This report summarizes the work carried out in the past three

years under the Lunar Surface Electric Properties (SEP) Project.

It concerns primarily with the theory of radio-frequency interfero-

metry used in geophysical subsurface probing. Parts of this report

have been published in the following articles:

1. Kong, "Electromagnetic Fields Due to Dipole Antennas over

Stratified Anisotropic Media," Geophysics, Vol. 37, pp. 985-

996, 1972.

2. Shen, Tsang, and Kong, "Multifrequency Excitation of a Wire

Antenna for an Invariant Radiation Pattern," IEEE Trans. on

Ant. and Prop., 1972.

3. Kong, Tsang, and Simmons, "Lunar Subsurface Probing with Radio

Frequency Interferometry," URSI Symposium, 1972.

4. Tsang, Kong, and Simmons, "Interference Patterns of a Hori-

zontal Electric Dipole over Layered Dielectric Media,"

J. Geophysics Research, 1973.

5. Kong, Tsang, and Simmons, "Geophysical Subsurface Probing with

Radio Frequency Interferometr," IBEE Trans. onAnt, and Prop.,

July, 1974.

6. Tsang, Brown, Kong, and Simmons, "Numerical Evaluation of Electro-

magnetic Fields due to Dipole Antennas in the Presence of

Stratified Media," J. Geophysics Research, 1974.

Contributions are also made by L. Tsang, John Mallick, Winston Chan,

Paul Palmer through their S.B. Theses, and by L. Tsang through his

S.M. Thesis.
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Chapter 1.

INTRODUCTION

The subsurface of planetary bodies, including the earth and

its moon, can be examined with electromagnetic waves. In 1955,

the radio-frequency interference fringes method was used on geo-

physical prospection of underground water in Egyptian desert

(El Said, 1955a, 1956b). This report concerns with the experi-

ment developed for Apollo 17 mission to measure the subsurface

electromagnetic properties of the moon (Simmons et al, 1973).

In the experiment, a transmitting antenna consisting of a pair

of orthogonal dipoles is laid directly on the lunar surface. The

antenna radiates sequentially at frequencies of 1, 2.1, 4, 8.1,

16 and 32.1 MHz in a time window of 100 millisecond for each fre-

quency. The time window is sufficiently long that the experiment

is effectively a continuous wave experiment. A receiving antenna

consisting of three orthogonal loops is mounted on the lunar roving

vehicle. As the LRV traverses the lunar surface, the strengths

of magnetic field components are measured as a function of distance

from the transmitting antenna. The data are recorded on magnetic

tapes and returned to earth for analysis. The interference pat-

terns of the field-distance plot contain information about the

electromagnetic properties of the lunar subsurface. To test both

equipment and theory, experiments have been performed on three

glaciers (Strangway et al 1974) in Switzerland, Canada, and Alaska

and on a scale model tank (Rossiter et al, 1974) in laboratory.
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In this report, we present the theoretical basis of the

experiment. The mathematical model is a stratified n-layer me-

dium. Each layer is bounded by plane boundaries and possesses

different electric permittivity, magnetic permeability, and

thickness. Although dipole radiation in the presence of stra-

tified media has been studied extensively (Sommerfeld 1949,

Brekhovikih 1960, Banos 1962, Gudmaudsen 1972, Wait 1970, Felsen

and Marcuvitz 1973, Kong 1972, Annan 1973), a proper account for

the interference fringes method is still lacking. The geometri-

cal optics approximation was the first approach used in calcu-

lating interference patterns (El Said 1956, Annan 1973, Tsang

et al 1973). With the use of the reflection coefficient formu-

lation (Kong 1972), all field components can be expressed in

integral forms with a single variable of integration. In order

to obtain explicit expressions for the six field components, the

following three different approaches are used to evaluate the

integrals: 1) geometrical optics approximation, 2) modal ap-

proach, and 3) direct numerical integration. Scattering effects

are l&so discussed: the advantages and disadvantages of the

various methods and their respective regions of validity are

compared in the last Chapter. All numerical results for aniso-

tropic as well as isotropic cases are presented in Appendices.
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THEORETICAL FORMULATION

2.1 INTRODUCTION

The problem of radiation of a dipole source in the presence

of stratified media has been extensively studied with application

to geophysical explorations. An excellent review on the half-space

case is contained in the book by Sommerfeld (1949) and in the.

monograph by Baios (1966). Propagation and Radiation in stratified

media are treated by.Wait (1970) amd Ward (1967). Wolf (1946), and

Bhattacharya (1963) considered the case of dipoles on two layer

earth. Wait (1951, 1953) solved the problem of electrical and

magnetic dipoles over a stratified isotropic medium. The case of

an anisotropic half-space was studied by Chetaev (1963) and Wait

(1966a). Praus (1965), Sinha and Bhattacharya (1967) and Sinha

(1968, 1969) treated electric and magnetic dipoles over a two layer

anisotropic earth. Wait (1966b) formally solved the case of a

horizontal dipole over a stratified anisotropic medium. All these

works are carried out by means of Sommerfeld's Hertzian potential

functions, and the primary interest is concentrated in the limits

of high conductivity. Magnetic properties are almost entirely

neglected; mainly because such model studies assume principal

applications to the earth where the permeability is nearly equal

to that of vacuum and the electric conductivity dominates at low

freauencies. In events of other celestial bodies, such as the

moon where the lack of moisture renders very low conductivity to

the medium, a study of contributions due to all electric and

magnetic properties then becomes important.



This Chapter is devoted to the case of radiation of various

dipole sources in the presence of a stratified anisotropic media.

The anisotropic medium is uniaxial and possesses both tensor

permittivities and permeabilities. The principal axes are all

perpendicular to the boundaries separating different media.

Solutions to the problem are facilitated by decomposing a general

wave field into TM and TE modes, employing the concept of propaga-

tion matrices and expressing the reflection coefficients in terms

of continuous fractions. The primary excitation is separated entirely

from contributions due to the medium. The reflection coefficients

depend solely on the geometrical configurations as well as the

physical properties of the stratified medium.

In studying the theory of electromagnetic wave propagation,

it has been appreciated both classically and quantum mechanically

(Kong, 1970) that introduction of a potential function is not

necessary and sometimes complicates the algebra especially when

anisotropic media are involved. With recognition of the fact

that outside any source, two scalar functions are sufficient to

determine all field quantities, two components of the field

vectors can be chosen as the fundamental scalar functions. In

our case, the preferred field components for TM and TE decomposition

are clearly those along the principal axis and to boundaries of

stratification. With the aid of propagation matrices (Kong, 1971),

wave amplitudes in any region are easily calculated in terms of

those in any other region. Writing in the form of continuous

fractions, we obtain a closed form solution for the reflection
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coefficients. All field components are expressed in terms of

integrals which are ready for direct numerical evaluation. 
A

discussion is given for the various special cases.
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2.2 TRANSVERSE ELECTRIC AND MAGNETIC WAVES

Governing equations for electromagnetic fields in a region

outside any source are the Maxwell's source free equations.

Vx E = iw 1 . H (2.1a)

Vx H = - iw . E (2.1b)

where in (2.la), U is the permeability tensor of the media. The

tensor c in (2.1b) contains information about the dielectric

constant and the conductivity of the medium. = s' + ie",

where c' is the permittivity tensor, and c" is related to the

conductivity tensor a by e" = a/w. Time harmonic excitations

with time dependence exp(-iwt) have been assumed. The tensors

E and V can be represented by hermitian matrices. In our case,

we consider media which are uniaxially anisotropic, where

S= (2.2a)

and

(2.2b)

PZ
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We employ cylindrical coordinates, and the plane transverse to

the z axis is characterized by p and c. Longitudinal elec-

tric and magnetic components Ez and Hz  are used to derive TE

and TM waves. The wave equations to be satisfied by Ez and Hz

are immediately derived from equations (2.1) and (2.2). If we

take the z component of (2.1l) in view of c given by (2.2a),

employ (2.1a) to eliminate transverse magnetic field components,

and use the fact that V * E = (1 - a)Ez/ z, the equation for

E isz

2
( t + a 2 + k2 a) Ez = 0 (2.3a)

By the same token, we obtain the wave equation for Hz

2
(V 2 +b- + kb)H =0 .3b)t2 z"

In equations (2.3a) and (2.3b),

k = V, (2.4)

a = e / e (2.5a

b (2.3)

and

2 1p 1 2V 2  (p ) + (2.6)
t 5aP bp 2 2€] ac
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is the transverse Laplacian operator expressed in cylindrical

coordinates. It is seen from Eq.(3) that E and H arez z

decoupled, which would not be true if the E abd p tensors

possess off-diagonal elements. A unique decomposition of the

total wave into a transverse magnetic field (TM) mode derivable

from Ez and a transverse electric field (TE) mode derivable

from Hz is therefore plausible. We note that a pair of vector

wave equations can be derived from (2.1) and (2.2):

V2E + k2E + (a - 1)k 2 Ezz + (a - 1)V(aEz/az) = 0 (2.7a)

V2 + k2 +(b - 1)k2H zz + (b - l)V(aHz/az) = 0 (2.7b)

Eq. (2.7a) is the vector wave equati6n for the electric fields of

TM waves where Hz = 0, and (2.7b) is the wave equation for the

magnetic fields of TE waves, where Ez = 0. The z component of

the two vector equations (2.7) gives rise to equation (2.3).

Solutions of E and H to the wave equation (2.3) in
z z

cylindrical coordinates are well known. As a consequence of the

Maxwell equations (2.1), all transverse-electric- and magnetic-

field components can be expressed in terms of the longitudinal

components E and H which, respectively, characterize thez z

TM and the TE waves. In our problems we are interested in wave

solutions which are outgoing in p direction and traveling or

standing in z direction. Therefore, we obtain, for a fixed

separation constant n,
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(e )  ik(e)z ik (e) z

i ( -Ae z + Be z ) H ( (k p)S M p)
k n p n

p

(e)(e) (e)co ak -ik (e) z ik (e)zT z z (1) TM' (cp) (2.8a)
E =F dk i (-Ae + Be ) H (k p) S

p 2 n p n
-co kp

p

(e) ik(e)
-ikZ z (1) TM

(A(k )e + B(k )e z Hn (kp)S (cp)
p p n

ik (e) (e)
awe ( Ae z + Be z ikH (k p) S TM (c)
k2 p n p n

00 -i k (e)z (e) z

-co p

0
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-ik (m)z ik (m) z
i b Ce z + (1) TE'i 2 ( Ce + De ) H (k p)S (ep)

k n p n
p

co -ik (m)z ik (m) z
E dk - - ( Ce + De ) H (k p)S (c) (2.8c)

_ p k n p n
-co p

0

bk -ik(M) z ik (M) z
i z z z (1)( TE

( -Ce + De ) H (k p)S (C)k

o i . (m) ik (M) z-iTE o - k (M) (1) TE' (2.8c
H = dk 2 ( -Ce z + De ) H (k p)S ()28

J k p n p n
-co p

-ik (m) ik(m)z
z z (1) TE

[C(k )e + D(k )e ] H (k p)S TE()
p p n p n
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where superscripts TM and TE denote, respectively, TM and TE waves.

We note that if the integrands for Ez and Hz are denoted,

respectively, by Ez (k p) and Hz (k ) such that

z p z zEz T M = dkpEz(k p) and H =1 dkpHz(k p),
-- o

then the integrands of the transverse components are related to

Ez (kp) and H (kp) by the following relations:

_M aw 
Et(k)TM - t DEz(k )/az , Ht(kp) 4 = -i - Vt  E (k ),

k2 P t k2  t Z P

p p

(2.9a)

and

Ht(k ) TE = k V Hz(kp)/Dz, Et(kp) TE = -b V x (k
t k k P t 1  Ick

(2.9b)
where

A Ap
E =zE , H = zH ,and V p -

The fact that TM waves are extraordinary waves in the medium is

signified in eauation (2.8) by the superscript (e) on the z-

(e)
directed propagation constant k(e) which satisfies the disper-

sion relation

k(e) = (k2 - k2 /a) 1/2 
(2.10a)

kz
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TE waves are derived from Hz and satisfy the dispersion relation

k(m) = (k 2 - k2/b)1/ 2  (2.10b)
z p

where the superscript (m) indicates the effect of magnetic

anisotropy. In (2.8), the first element of the column matrices

denotes P component, the second element of * component, and

^r (1)
the third element the z-conponent. The Hankel functions Hn

of the first kind and nth order represent outgoing waves in

direction due to our choice of the time dependence exp(-it).

Sn(#) stands for sinusoidal functions of . Primes on Hn (1)(k p)

and Sn(4) denote differentiation with respect to the arguments.

The kp dependent functions A, B, C and D are to be determined

by the appropriate boundary conditions.

2.3 PRIMARY EXCITATION

The explicit solution to the problem of dipole radiation

over stratified medium depends on field excitations of the source,

and the geometrical configuration and physical constituents of the

medium. In the absence of the stratified medium, the solution of

electromagnetic fields in an isotropic medium due to a dipole

antenna, which we refer to as the primary excitation, is well-known

(Adler, Chu and Fano, 1960). The solution is usually written in

chperical coordinates. It can be transformed into cylindrical

coordinates and represented by Hankel functions in the integral
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form. Writing in the general form, we have

Sik z

E = dk E (k ) H (k P) S TM (C) z > 0 (2.11)
Sp o p -ik z n n z < 0

-ik z
co

CO H Ck ) zTE z > 0 (2.12)H = j dk o (kp -ik z Hn1 (kp) SnTE () z< 0
-co ze .

where E and H characterize the structure and excitation of
o o

the dipole. All field components follow from Eq. (2.8)

with B = D = 0, A = E, C = H for z < 0, and A = C = 0,
o o

B = E, D = H for z > 0.
o 0

For the elementary dipoles under consideration, we obtain

for:

TM
1) Vertical electric dipole: n = 0, S (T ) = 1

Ilk
E =- (2.13a)
o 8Trwek

z

H = 0 (2.13b)
0
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2) Horizontal electric dipole along x-direction

Ilk
k > TM

E =+ i z < 0 S = cosp (2.14a)
o - 8Twe 1

Ilk
H = i S T E =- sinp (2.14b)
o 8nk 1

3) Vertical magnetic dipole: n = 0, S TE() = 1

IAk
H =-i P (2.15a)

o 8rk z

_E = 0 (2.15b)

A
4) Horizontal magnetic dipole along x-direction

IAk- P > TM
H = + z < 0 S = cos (2.16a)
o 8rr 1

IAwuk 2
E IAk TE n (2.16b)

o 8rrk S = - sin
z

In the following, we derive Eq. (2.14) from well-known potential

solutions for the dipole. Similar derivation, comparetively sim-

pler, applies to Eqs. (2.13), (2.15) and (2.16). The vector poten-

tial solution for the horizontal electric dipole is
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A = A(pcos - *sin )

IL ikrwhere A = i e /r

The electromagnetic fields are obtained from

and

1 2
E i {V(V * A) + k A

Using the identity (Sommerfeld, 1949)

ikr k +ik z
= dk - H (k p) e

r 2! o

the field components can all be written in the integral form.

For the z-component,

Hz = - sin# 8A/3p

E _ 1 -1 coso 32A/3p3z

The results are Eq. (2.14).

In Eqs. (2.13) - (2.16) I is the current that drives the di-

pole, 1 the equivalent lingth of the electric dipole, A the area

of the current loop that constitutes the magnetric dipole. Hori-

zontal dipoles can be simply obtained by a rotation of coordinates,

which ammounts to change cost to sins and sins to - cos4.

We note that a vertical electric dipole excites TM wave only and

a vertical magnetic dipole excites TE wave only, both involve
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Hankel functions of zeroth order; whereas horizontal dipoles excite

both TM and TE waves and require Hankel functions of first

order. An arbitrary oriented dipole can be treated as a linear
A A A

combination of three dipoles along x, y, and z axes which are

just described.

2.4 DIPOLE ANTENNAS OVER STRATIFIED ANISOTROPIC MEDIA

Giometrical configuration of the problem is shown in Fig. 2.1.

There are n slab regions, and the last region is numbered t

instead of n + 1, for the sake of simplifying writings. In each

region labelled i, solutions of electromagnetic field components

take the form Eq. (2.8) with all quantities subscripted by i. In

the Oth region where we have the antennas, A0 = E0 and C0 = H0

which are known from (2.13) - (2.16) for the three types of anten-

nas under consideration. In the last region namely region_ t, it

is semi-infinite and we do not expect reflected waves, therefore,

Bt = Dt = 0.

Boundary conditions at all interfaces are that all tagential

electromagnetic field components must be continuous for all p and

*. Consider the boundary at z = -di, the continuity of tangen-

tial electric fields and the continuity of tangential magnetic

fields yields, for the TM waves,

ik. (e)d -ik. (e)d
kiz - Ae+ Bie

).e) d
= k(i+) { - Ai+le (i+1)z i -ik el)z (2.17a)

+i+1 B+ e i}z



2-15

ik (e)d -ikz (e)d.
i {Ale i + Bi e Z 1}

ik (e) d -ik (e) d
Se (i+) z i e (i+l) z i (2.17b)

Sei+i Ai+l e+ Bi+l e

and for the TE waves

ik. (m) -ik. (m)d.
i e Cie z i + Die iz

ik (m) d -ik ) d (2 18a)
c (i+l)z i+ (i+l)z i

SMi+l { Ci+1 e + Di+ e

'(m) ik. (m)d. -iki (m)d
miz i I 1ki ( _Cie z + Die

(ik m) d. -ik() d (2.18b)k (m) C e (i+l)z i + Dz i(i+l)z i+l ei+

The reason that we can treat the TM and TE cases separately is

because that 1) for vertical dipole case, only TM or TE is

excited; 2) for horizontal dipole case, although the total tan-

gential field components consist of both TM .and TE waves, the

coefficients of H1 (1) and H(1)' separates TM and TE cases.

We now illustrate the derivation for the upward propaqation

matrix M. i + 1 for TM cases. From (2.17a) and (2.17b) it is
1

straight-forward to solve for A exp ikkz(e) d and B exp - ikiz(e)d

in terms of Ai + 1 and Bi + 1. Define

a. = A. exp (ik(e ) d. ) (2.19a)
1 1 1Z 1
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b. = B i exp ( - ik(e) d. ) (2. 19b)

We have

1 i+ (e) i+l (e)

i  {(+) e(+) ai+ +  - ) i  e(-) bi+1  (2. 2 0a){c aI + )i i+l

1 i+l (e) i+l (e)bi {c(-)i e(+) ai + c e(-) bi+1 (2.20b)

The upward propagation matrix for TM waves from (i + 1)th region

to ith region is defined to be

i+l (e) i+l (e)
(+) e(+) e(-) e(-)

i+l 1
M i = (2.21)

i+l (e) i+l (e)
Se(+) (+) e(-)

where

S k(e)
e(+)p = + -  -

q Eq - (e)
q kqz

(e) (e)e(+) (e)= exp[+ik(e) (d d )
- i (i+l)z i di+l )
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(e)k = 2
iz k - k /a1 p

Equation (2.20) can be written as

a. a
ai ai+l

Mi+1= M (2.22)

b bb. bi+1

Note that, with R denoting reflection coefficients and T

denoting transmission coefficients, we can write

a = E exp (ik(e) d ) (2.23a)
0 0 z 0

b =R TM EO exp ( ik (e dO ) (2.23b)

a t  TTM E0 exp (ik ( e dt ) (2.23c)

and that bt = 0 because there is no reflected wave in the last

region. The parameter dt in (2.23c) is introduced for convenience,

it does not correspond to any distance and is always multiplied by

e(-) (e) to yield exp(ik (e) d ). The definition of the propagation
n nz n

matrix is a useful one. Once wave amplitudes in any region are

known, those in the regions above this one are all determined by
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(2.22). Thus the propagation matrix (2.21) propagates wave

i
amplitudes upward. We can also define a propagation matrix Mi + 1

which propagates wave amplitudes downward.

i (e) i (e)
e(+)i+l e(-) i C(-)i+l e(-)

i 1
i+l 2 (2.24a)

i (e) i (e)
(-)i+l e(+) + e(+)

a ai+l a i a

and = Mi (2.24b)
I = i+1

bi+j1  bi

It is easily shown that

Mi+1 i
SMi+1= 1 (2.25)

Following a parallel analysis of the above, we define a

downward propagation matrix Ni+1 for TE waves.

' i (m) () i. (m)
i+l i i+l i

i 1
N i+l (2.26a)
i+l 2

i (m) i (m)
(-)i e(+) )(+ e(+)i+1 i i+l i
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i+

i+l e m i+l e m

ci  Ci+1

ii

ii+1

In (2.26) and (2.27)

k (m)
+1 = + P (2.28)
q - k(m)

qz

1 1 iZ 1

1 1 i1 1d.D .m (2.29b)

k ( N 2 2 (2.29c)iz k

d d
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Also c o 
= H0 , d o 

= RTE H0 , t  TTEH0  and dt = 0. We note

that for vertical magnetic or electric dipoles, only the TM waves

or the TE waves, respectively, are excited. In the case of either

a horizontal electric dipole or a horizontal magnetic dipole, both

TM and TE waves are excited.d

2.5 REFLECTION COEFFICIENTS

In the interferometry method, our primary interest is the re-

flected wave fields. From the preceding section, we have established

that when the wave amplitudes in region 0 are known, solutions in

any other region can be determined by using the downward propagation

matrices (2.24) and (2.26). In this section, we derive for the re-

flection coefficients, a formula which is expressed in continuous

fractions. We observe from Eq. (2.23) that bt/at = 0 and b 0 /a 0
TM

gives rise to the reflection coefficients RT . And from (2.22),

an expression for bi/ai in terms of bi + 1 /ai + 1 can be easily

extablished. In view of (2.21), (2.22) gives

i+l i+l i+l i+l i+l
b. e(+) (+) / - e(-) / (+)i i i i i i

S(1- )
a. i+1 i+1 i+ + (e)2

a e(-) e(+) / (-) (e(-) ) (bi+b /a+ )

(2.30)

Making use of (2.30), we obtain a formula in continuous fraction

for the reflection coefficient RTM
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1 1 1
((+) e(+)o /  (- ) - (-)o / (+) 0

RTM ex (e) 1 0 01Rn = exp(i2k z  dO  1 {I - 1n 0 e(-)o e(+) / e(-) o

2 2 2 2 2

(e) (1 1 1 (-)1 / (+)1
+ exp(i2k(e) (d d)) 2 [1 -

z (-)1  e(+)

te(-)
+ ........ + exp(i2k(e) (d d n ..... (2.31)

nz n n-1  t
n

Likewise, we obtain the reflection coefficient for TE waves

1 1 1 1 1
E 0 0 0/ 01(+)

RTE exp(i2k (m)d ) 1 / I
n z 0 1 1 1

(-) (+) / (-)

2 2 2 2 2

+ exp(i2k(m) (d do)) [ 1 -2 2lz 1 0 2I 2 2

t

+ .... + exp(i2k(m)(dn - d n)) n .... ]}. (2.32)
nz n n-1 ( t

n

The subscript n on RTM  and RTE  denotes the number of layers

involved.
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2.6 SUMMARY

With the reflection coefficients determined in the last

section, we can now summarize the formulas for all field quantities

in region 0, where interference patterns are calculated. We have

decomposed total wave fields into a summation of the TM and TE

wave modes.

E= TM+ E.TE (2.33)

-TM -TE
H=H +H (2.34)

The TM and TE solutions are

1) For a vertical electric dipole

(t) (e)
+ik z ik z

ik (+ e + R E ) H (k p)
p0

-TM CI
E = dk (- ) O0

-oo

ik z
P z TM (1)

( e +R e )H (kp)
k (e) 0 p

(2.35a)

0

co k2  + ke ik z
-TM I P - z TM z (1)'
H = dk (- ) i ( e +R e ) H (k p)

p 8r ke) 0 p-co z

0

(2. 35b)
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-TE -TE = 0

2) For a vertical magnetic dipole

0

2 (Vo e )
cc k +ik z ik zT -- zP TE z (1)'

TE = dk i -ik (e + e ) H (k p)
P 8TT 0 p-co z

0

(2.36a)

+ik z ik z
ik2 - Z RTE Z ()' (k

(k e + R e ) H (k p)

z

TM -TM = (2.36b)

3) For a horizontal electric dipole along px-direction
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+ik z ik z
(e) - z TM z (1)'

iak z k (e - R e ) H1  (k p)cosp

( e )  +ie) e)
oo k +ik z ik z

-TM ke Iz - z TM iZ (1)
E =T dk (i ) -a --- (e - R e H (k p) sincp

p 8 Twe p p

Ce) ie)
+ik z ik z

k 2 (+e- - TM e )H (k p)cosp
p -

(2.37a)

a - i k(e z  ikzaz zTM (1)- -- T(+e - R e )H (k p) sinc
p -p

co +iko)z ik z
-TM It -ak RTM iz (1)'
H = dk ( ) -ak (+e - e )H1  (k p)cosp

p 8rr p-co

0

(2.37b)

+ik z ik zb Z RT E  z (1)

C.k +ik ikz E

pTE = RT )T b - R e )H1  (k p)sinc

0

(2.37c)



2-25

+ikZ ik z
ibk (+e z + RTE e )H (k p) sinp

P 1wpe

Co +ik"z ie)z
TE IL ib z TE z (1)

TE = dk (i - ) (+e +R e ) (k p) osC
P 8 p - p--CO P 8T

2 (m) m)
k +ik z ik zk p - z TE z (1)
k (e + R e )H1  (k p)sincp

z

(2.37d)

4) For a horizontal magnetic dipole along x-direction

+i ze) ike)ziak - z + RTE z (1)'
ak (e e )H (k p) sinp

p p

e) ie)
-TM = dk IA ) +e z +RTE e i kH (1)E =+ e (k p)cos- P 8-r P

2 C(e) ()
k +ik z ik (

- Te (e + R e )H (k p) sincp

(2 .38a)

(c) cee)
+ik z ik za - z TE z (1)

- i (e + e )H (k p)coscpz1 p

ce) ce)
O 2 ak +ik z ik z

TM IAk - z pTE z (1)
T=- dk p - 8 ) i k-eZ (e + e )H (k p) sincp

-cc' z

0
(2.38h)
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+ik z ik z
b Az TE z (1)

(A + R e ) (k pP) cOS cp

ETE TE dk (i 1) (k p) cos p

-co

0

(2.38c)

ik z
+iTE iz (1)E

ibk(m)k (-e + R e )H 1  (k p) coscp
z p

bo bk +ik z ik z
TE dk IA ( + RTE z )H (1) (k p) sinp

p 8p p

+ik Z ik z
2 - z TE 2 (1)

k (e + R e )H (k p)coscp

(2.38d)
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2.7 DISCUSSIONS

The problem of radiation of various dipole antennas over a

stratified anisotropic medium has been solved. In view of the

general formalism as presented in sections V and VI, we can make

the following observations:

1) All medium properties such as the constitutive parameters and

the geometrical configuration are all absorbed into the reflection

TM TE
coefficients R and R , which is readily computed by Eqs.

(2.31) and (2.32). Clearly, when all regions possess the same

constitutive parameters, namely when there is no stratification,

TM TE
R =R 0.

2) Since the anisotropy in permittivity appears only in e(+)

and the anisotropy in permeability appears only in p(+), it is

TM
seen from (2.31)-(2.34) that R does not depend on the magnetic

TE
anisotropy and R does not depend on the electric anisotropy.

TM TE
Both R and R are seen to be even functions of k

3) It is obvious from (2.35)-(2.38) that a vertical electric dipole

excites TM waves only and a vertical magnetic dipole excites

TE *aves only. Whereas both horizontal electric and magnetic

dipoles excite both TM and TE waves. In the case when

permeability is isotropic, the TM waves are extraordinary

waves and the TE waves are ordinary waves. A turnstile

antenna which consists of two dipoles perpendicular to each

other and driven 90 degrees out of phase also excites both

TM and TE waves.
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4) The above formulation can be compared with the potential

approach for the various cases that are existing. In the case

of no stratified medium, the results are checked by using the

identities

H + H = H 1  (2.39)1 k p 1

and

Sd ik p (1(k p) exp (ikp 2 + z 2 )/p2 + z 2

- P z

(2.40)

2 2 2
where r = p + z 2  in spherical coordinates. We define the

number of layers of a stratified medium equal to the number of

boundaries. The medium below the nth boundary is called the

tth layer.

5) The one layer case (or half space) has been extensively

studied. We obtain from (2.31) and (2.32)

1

RM 1 exp (i2kze)d0 ) (2 .41a)
R 1 exp z

e(+)

1

RTE - 0 exp (i2k (m)d0 ) (2.41b)

0

In the case of a perfectly conducting half space,

3 = 3 - oo. Eq. (2.41) gives R = 1 and RT E -1.



6) Observe that all contributions due to all layers below the

first are lumped into the reflection coefficient Rnl , such

that

1 1 1 1 1
TM (e)d) e (+)_ o E(+)o/(-) - e(-)o/E(+)o
Rn = exp(i2k z  d ) 1 (1 (1 1 (e) TM

S_) ,/-) + expi2klz d o)R n-1

(2.42)

1 1 1 1 1
E e(m)d +) +) (-)o o- )1n/M+

Rn = exp(i2k (m) do)  (1 exp(2k d )RTE
0()o (+ exp 1zon-I

(2.43)

TM TE
The definitions for R and R 1 follow directly from (2.31)

n-l n-l

and (2.32).

In order to make effective use of the results obtained for

the one layer case, we follow Wait (1953) to define a stratification

factor for conductivity dominated media such as the earth. For

a vertical electric dipole on the ground, the electromagnetic

field quantities can be written in terms of one single integral

ik z
k H (1 ) (k p)e

J =f o dkp (2.44)

k + Q- kz e C 1lz

The field components are

H t I9 e
H (-P (2.45)

EP (- wE apaz (2.46)

Ii2
It a k2 

z = (-  2 +k ) Je (2.47)z z
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The integral J follows from Eq. (2.35). The stratification
e

factor Qe is determined to be

T M
1 - RTM

n-1
Qe RTM (2.48)

n-1

Under the assumption that the stratified medium is conductivity

dominated such that k (e )= k i , e is then seen to be a constant.iz e

kpz/kqz =J/cE7 , and J becomes
pz qz p q e

ikr
Je = 2 e i + pl e p 2 e (i 2) (2.49)

Eq. (2.49) is obtained from (2.44) for far field and observation point

near the surface such that kp8 >> 1 and z/p << 1. In (2.49),

k p k1z 2
pl k2 P2 P1( 1 + k ) (2.50)

2k o

and erfc is the complementary error function. Replacing k1

by Qekl , we obtain an analytic solution for a vertical electric

dipole on top of an N layer stratified media.

For the case of a vertical magnetic dipole on a stratified

medium, all electromagnetic field components can also be

written in terms of one single integral Jm The stratification

factor Q can similarly be determined from the reflection
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TE
coefficient RT E  Under the assumption of high conductivity,

TE1 - R
Qm n-l (2.51)T1 + RE

n-1

ikz
k H (1) (k p)e z

J - . (2.52)
m k +Q- kl

Eas. (2.51) and (2.52) are dual to (2.48) and (2.49). The stra-

tification factors Qe for a two layer ground has been calculated

by Wait (1953). In Figs. 2.1 and 2.2 the amplitude and the phase

m are plotted versas w11 1 1 d1  for the two layer case. Qm

is seen to drop to near unity as ip-al dl becomes larger than

1. Thus the effect of the second layer diminishes as dl > (al)-1/2

In Figs. 3-6, the amplitudes and phases of both Qe and Qm

are depicted. The depth of the first layer is assumed to be

dl = 2(wjl) -1/2 The ratio (a2/l) 1/2 is set to 0.5, and

(3/2 )1/2 is used as a parameter. As d 2 -dl becomes larger

than 1.2 (pa 2 )-1/2 , both IIel and IQm drop to within

about 6 percent of its final value. Beyond that we can

safely omit contributions from the last layer.

7) The integrals as presented in (2.35)-(2.38) can be directly

programmed with a computer or analyzed analytically. Asymptotic

evaluations of the integrals and numerical results for the

electromagnetic field quantities under various circumstances

constitute topics of the subsequent papers.
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Chapter 3.

DIPOLE ANTENNAS ON A HALF SPACE MEDIUM

3-1 FIELDS IN THE LOWER MEDIUM

For a horizontal electric dipole above a lossy dielectric

half space, the electromagnetic field components in the lower

medium (i.e. the field components of the transmitted wave) are

listed as follows:

-~ 1 (k p) cos
kzp

S,-ikm) k
f.TE = dk t 2 e tz - H 1k ) (k p) sin, (3.1)

0 8 (in) k 1 p

- t/ + ktz /kz 2

0

k(m)
tz (1)'()tz HI(1) (kfP) sin
k

(m) (m)-ik ( kI 2 tz tz (1)
f dk e sin t H (k p) coso (3.2)

8- (m) kzp-" B t/y +ktz /kz

k 2
H(1) (k p) sin,

b k 1z
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- k k(e) H(1) '(k p) cosj
p tz 1 p

. (e) (e)

k
z_ i k 2 Hi (k p) cos

a 1 p

1 (k p) sine

S It% -ik (e) 1
T = f dk t 2 k(e) e tz k H(1) (k p) cos (3.4

- 8 t tz
H ~-- +

C k

A typical integral to be solved takes the following form

I" - ()e by; <t0 (3.5

The first order Hankel function is the negative of the derivative

of the zeroth order Hankel function. In the above integral

-TPt, > =
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Two points are to be noted:

1. The path of integration along the real axis of hp

is actually undefined for strictly real k because

the branch point kp = k then lies on the path.

There are two remedies. One is to assune a vanish-

ingly small imaginary part for k. The other is

to choose the Sounerfeld path of integration.

2. Taking remedy into account, we notice that there are

two double-valued functions in the integrand viz.

*kz and klz . They must be well-defined along the

path of integration. They are defined as follows:

Along the path, Re k,, > , Ion k,, >O

Re k1 >o , L k > 0.

To facilitate solution of the integral,

the conformal transformation h - k, su is made , so

that the integral becomes

where

C is the original path in the

plane. If k is strictly real , C first runs from

-f +i to - and then along the real 3 axis
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to 2 and then from - to -oo . When k I is

slightly conductive, C is slightly shifted with

its position as shown in figure 3.1.

Now, in this /, plane, only

kk= -k ,2s'3 is a double-valued function. The

branch cut Im k z = 0 is drawn. On the top sheet,

Im k > 0 , and on the lower sheet Im kz 0 .

The path of integration C lies on the top sheet. The

path C is then detoured to a path such that along the

new path, the argument of the Hankel function is always

big so that the Hankel function can be expanded asymtot-

ically.

" e s' A (P) e+

The exponential arising from the

asymtotic expansion of the Hankel function, combines

with the exponential in front to give 9 cos(P-t)

where ce =tnl- . Therefore, there is a saddle

point at =o( ., The branch point due to kz is at

8o = + 0o . Because k1 has a small imaginary

part, therefore 8o is complex. For slightly

conductive material, 8 o is approximately the critical

angle. 80 , on the other hand, is very small but negative.
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The location of the branch point and branch cut are all

marked in figure 3.1.

The problem, that is next faced, is to

detour the original path C to the saddle point steepest

descent path. There are two different detours for two

different regions of interest. For OC smaller than o',,

the 'detoured path starts at - ti , goes to -f +C +0o0

, and then goes down the path of steepest descent

passing through the saddle point crossing the branch cut

twice and crossing the real axis at the saddle point in

between, and then goes down to 3 +E -+w and

from then back to the end of the original contour at

2 -L . On crossing the branch cut once, the

contour gets onto the lower sheet. On crossing the

branch cut again it crosses back onto the upper sheet.

The dotted portion of the path lies on the lower sheet.

The integrand is analytic within the domain

of the enclosed contour and along the path, and by

Cauchy's integral theorem, the line integral of the

original contour is equal to the line integral of the

new contour. Notice that although the domain enclosed

by the two contours lies on different sheets, the function

is still analytic along the contour and in the domain.

On jumping to the lower sheet, the function retains its

continuity. On the other hand, if it jumps acoss the

branch cut and stays on the same sheet, the function is

discontinuous at the jump. Also, in this case, since
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the new contour crosses the branch cut twice, going

down and coming up again to the upper sheet, it can meet

the other end of the original contour and forms a closed

loop.

Therefore, for g less than

where

In the above expression, the double-valued function

o i/a-Sing assumes a positive real part and

a negative imaginary part. This is because the saddle

point, as can be clearly seen from figure 2a, lies on

the dotted portion of the curve and thus lies on the lower

sheet. And , on the lower sheet, Im k (0 .

Physically, the saddle point corresponds

to the angle of observation in the lower medium.

For o~ bigger than Oo , i.e. the

observation angle greater than the critical angle, the

branch point contribution has to be included and

the original path C is detoured in the following way.

(Figure 3.lb). It starts at - ~ L 0 and goes to

O + L o , goes down the left side of the branch cut
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on the upper Rieman sheet, goes around the branch point,

back to O + iOo on the right side of the branch cut

on the upper sheet. It then crosses the branch cut onto

the lower Rieman surface, goes to - + O + i and

from there, follows the steepest descent path, crosses

the branch cut again back to.the upper Rieman surface,

crosses the real axis at saddle point o( , goes to E + -< ao

and finally connects back to the end of the original

contour at L -iD . Therefore, summing up, there

are two contributions to I : the saddle point path

contribution II , and the branch cut contribution 12

The saddle point lies on the upper sheet. Therefore

2 [AJ (f)+ 2 ( (IX + cot 0C

where,

and kz assumes a positive imaginary part and a corr-

esponding negative imaginary part in the above expression

since on the upper sheet, Im k) 0 .

At this point, it is convenient to adopt the

following convention. We denote Si-k~ .' ( the

square root sign ) as always having a positive real part.

Therefore, going back to our analysis, kz can be either

+ k'T-s i ' , or - - depending on the sheet

the path is lying on. With this convention, the solution
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is rewritten as follows:

for o~ less than f' ,

where, cosoc

d) kcosJA Wkas(ao

for oC greater than ",

S-Q 2 . La[A (oc +: (Ilk + Cdt(

where,
, (e) = ah, os 0C

k,cos ' J - k# siA44Co

To evaluate the branch cut contribution

12, much care has to be exercised. The branch cut is

defined by Im kz= 0 . On the left side of the branch cut

Re k) 0 , while on the right side of the branch cut

Re kz<0. Denoting the positive side by B+ and the

negative side by B_,

- - (A. iRcos/(-o)

+ f iSq (p) e
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( Up means from branch point to o .)

The above integral can be combined in two

forms, either by changging B_ into B+ so that both integrals

are written as B+ , or alternatively, by converting B+

into B to have both integrals in terms of B_ . Thus,

there are two forms of 12 :

s. -

or

Both give the same answer.

The next step is to detour the path, either

B+ or B , to the steepest descent path passing through the

branch point. ( Note: one must distinguish between the

steepest descent path passing through the branch point and

the steepest descent path passing through the saddle point.)

The position of the steepest descent path BS through the

branch point is clearly depicted in figure 2b. It lies to

the left of the branch cut. Therefore B can be detoured

to BS by simple application of Cauchy's theorem. Therefore

4 1 se h acoS- ak, s;n/3 d

On the other hand, if B+ is to be detoured to BS , one needs

to cross onto the lower sheet and subsequent calculation
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needs to be performed on the lower sheet. This is unadvisable.

If , it is quite plausible, one is not careful enough to

follow the above step by step, one can easily just detour

B+ to BS and arrive at

This is the negative of the correct answer and is wrong.

The contribution of BS mainly comes from

around the branch point. By applying the method of

steepest descent to the above integral, one obtains (Appendix

I)

2 h e "ia + ;h

Finally, in summary,
I

for oC less than ,

-- __J (A"L) (6 ca A'ocI)J

where

C) = , / Lt Is ha. < 0
for kos greater sin

for o greater 9
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[A(i+o + cot A v

where,

B, CoS c
A (e) Skcosc 'O A k-s koe

Several physical observations can be made.

For o4 greater than , there are two waves, repre-

sented respectively by the first and term in I. The first

term corresponds to the spherical direct wave, and the second

term corresponds to the flank wave. From the equation, one

also notices that if k1 is strictly real, both terms blow

up at o = o  . Mathematically, this is to be expected

because the saddle point collides with the branch point.

Actually when the saddle point approaches the branch point

and gets near to it ( this also applies to the case of

complex k1 where o is never exactly equal to o -)

, the saddle point method breaks down. The area o t So

,is the area in which the two'waves interact and they have

to be considered together and not separately. A detailed

discussion is given in the book by Brekhovskih 3
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by most authors. The advantage of using this branch cut

is that it can be detoured to the steepest descent path

passing through the branch point. In the following, it

is shown that the same answer will be arrived at even if

a different branch cut is chosen. The different branch

cut is Re k z = 0 . Solution with a different branch cut

yields the same answer means that the choice of different
I a

signs for k z in the two regions oC < 8o  and c > 8.

is absolute and is not arbitrary.

With the branch cut Re k = 0 , and after

the k = kl sinp transformation is made, the same integ-

ral is obtained but with the picture in the complex

plane changed as in figure 3.2. BS is the steepest

descent path passing through the branch point. On the

top sheet Re k >0 , and on the lower sheet Re k < 0

On the top sheet, where the original path lies, there is

the positive side of the branch cut B+ where Im k z > 0 ,

and the negative side of the branch cut B_ where

Im kz ( 0 . The most important observation is that, in

this case, the branch cut , no matter whether the B+

side or the B_ side, cannot be detoured to the steepest

descent path BS through the branch point.

Analysing the integral as the case with the

branch cut Im kz = 0, for o < 9O , the saddle point

lies on the upper sheet and Re k z)0 .

(v-) ' - (A "() + c(R(')A'(*0)
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Notice that the saddle point contribution in this case

ii different from the corresponding I 1 in the case

Im k z 0 because in that case Im kz >0 and in this

case Re k> 0 .

Analysing 12 the branch cut contribution,

-2k, tk, R cos (13-,)
2e d owA 8.sie

fp 8.

22 -k

=- e sR 3 e ( I + s,;ps ) D ({) cd/

( Again, up means from branch point to Do . )

where,

2 k, A, c.os 3
D ( f) h.3-h." + 2 si', Re k. > 0
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whe re,

A (a) = , os O. - 2 _ 20 Re k, o

Therefore, the answer checks with the case with branch cut

Im k = 0z

In the case o > , there are , as in the

case with branch cut Im k 0 , two contributions ; one due

to the steepest descent path passing through the saddle

point and the other due to the branch cut. The branch

cut contribution, however, as opposed to the case of branch

cut Im km = o , is of first order effect.

Set

I = I +2

where I1 = contribution due to steepest descent

path through saddle point.

12 = branch cut contribution

then,

L . [Ao) + (AA---- cot A(.

where,

h, Cos Re k,>oA,8cosc~~ja- ka s i a.>
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The path B cannot be detoured to BS. To evaluate the

contour integral along B , the path B_ is detoured to

a path consisting of two parts: the first part L1 extend-

ing from the branch point to the saddle point, and the

second part L2 extending from the saddle point to

dowm the steepest descent path. By Cauchy's theorem

Therefore,

J I

whTr R e( ikR Wco)W o DC)

CL (I-cot W: tot 90 )1"

where

k, =2i a c( k,cosL
'(~)a ,o Cbh oSkaiha ln O(
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Combining these expressions, one has

I I, + IZ

- R ' 2ikAL (T-"(.) + 6 4-) ct KCj

0 0 cot c omnJ

where G () = A (o) + D (D)

= A (d) of the case of branch cut Im k = 0

Therefore; in summary, the answers are identical

whether the branch cut Re k = 0 or Im k 0 isz z

chosen.

For TM waves of nonmagnetic material,

on the top sheet, there is a Sommerfeld pole at Sin p- 2

in the denominator. Its effect can be neglected by the

following reasoning. When ( Do , V lies on the lower

sheet ( branch cut Im k z = 0 is chosen. ), while 0p, lies

on the upper sheet. Thus the pole is not enclosed between

tHe original contour and the detoured contour. The pole

does not contribute anything. When o > So , the

analysis is slightly more complicated. When the original

path C is detoured to the saddle point path P , two

contributions need to be considered : one due to the branch
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cut B, the other due to the residue of the pole P1 be-

cause in this case, the pole does lie between the original

contour and the detoured contour. But, in evaluating B, it

is detoured to the steepest descent path BS, and on this

detour, P1  is again enclosed, and this time, its contri-

bution is exactly the negative of the residue and thus can-

cels out exactly the previous contribution. Summing up, P1

does not contribute both for a < ' and a > 0 '. The
O o

only contributions come from the saddle point and.the branch,

both of which have been discussed already.

3.2 RADIATION PATTERNS

In this section, we analyse the radiation pattern

of the horizontal dipole for the half space case. The radi-

ation pattern gives information of the angular distribution

of the radiated energy. This information is of crucial im-

portance if the interference patterns for the two layer case

are to be explained in terms of ray optics.

The radiation fields are of 1/r dependence. The

1/r term, in this case, corresponds to the first order term

in the saddle point contribution.

For the half space case, with the dipole on the

surface, the reflection coefficients are

E * -pJE TMt

JA,+pLk 4- E +,
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The electromagnetic fields , to first

order are the following.

For the upper medium:

hkr
TE i e . (a () -- ,

4y r

= - - 0 CarC. ) sin l

TM IL e hcos. 9 (0) cos
E - 4iwL r

-4 I r L4 2 ,L in Cos () cos0

ITM e a cos ) (8) cosf
4vt I-

For the lower medium :

TE Iix%
r= - , , s X,, (4 s)i

E IL wp eAr

E - O Z4 IX10 Sin

HTE It e C'

TM ItL e L, C_.

ErTH -' 4r;, ; r 'h e cos o, (,) (OS €

•~~ e'r i"£, en w IikZsi dC' d b ) d
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-r kLaCos O (., cosb

where,

Al k a - U h;

1 2

is the observation angle in the upper medium and

0C is the observation angle in the lower medium.

The Poynting vector is S = Re (aEX -)

Denoting the radial component of the Poynting vector by

Sr , we obtain , for the upper medium

S2 , 2

s, = J '^'hX ', () sih k cos Cz~) cos

for the lower medium,

,J L A10 (09 Su 1z ', Cos Co/ Cos
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The maximum power radiated into the

lower medium is at the critical angle for broadside
-a ~

( ~=9 0  ) and at the angle 5WS

for endfire ( 0 OQ ). These values can be obtained

by setting the derivative of Sr with respect to the

Qbservation angle equal to zero. Another interesting

observation is that for the endfire radiation pattern, Sr

is precisely null at the critical angle. A quick way to

explain this is that the free space radiation power is

zero along the endfire surface, so that there is no

" incident field " into the dielectric at 8 = 900

when the dipole antenna is put on top of the dielectric

medium. Another observation is that along the surface,

fields are of second order effect, and thus the radiation

power is zero along the surface. If kl contains an

imaginary part ( for conductive medium ), however small,

the radiation is null in the lower half plane, because,

by-definition, the radiation pattern is measured at infinity.

The Im k, gives rise to an exponential attenuation with

distance and the power vanishes at infinity.

3.3 FIELDS IN THE UPPER SPACE

In actual experiment, the receiver is

placed above ground, so that, we are actually interested

in the region z > 0 for the half space problem. The

transmitted wave for z < 0 is interested not in the
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half space problem, but, as has been mentioned, its

solution sheds light on the two layer problem which will

be discussed in the next section.

For z > 0, a typical integral to be

solved is

Notice that this integral is different from the trans-

mitted wave integral in that klz is replaced by kz

Let

In this case, the conformal transformation is

he = h

The saddle point is at w , where 9 is the obser-

vation angle in the upper medium, 8 = tq,-.

The branch point is at * = sint  - , - O,

The branch cut chosen is Im klz = 0. The equation of

the steepest descent path p passing through the saddle

point is Re kRcos (~-8)= R . Let's take k1 to

be strictly real for the time being, so that T' = -i

cosk 9 -- . The"steepest descent path passes

through the branch point when

Re kR cos (O,-) - AR

cos (,' -)cosk 9, =

Sih 9 =
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and this turns out to be , quite a coincidence.

Therefore, for e <9 o , only saddle point contribution

is needed, while for e > 8O , branch cut contribution

needs to be included too. The branch cut contribution

is to be carefully manipulated by the B+ and B

approach, and also by using the method of steepest descent.

For the Tm wave, the Sonmerfeld pole does not contribute

by similar reasoning.

In summary, extending also to slightly

conductive kl too1

for < g ,

I e . I( ~+ 7;T(I(Ocot + B4))

for >e

- L B~-~[() + 2 '() cot +B"(o)

24, e ip

The double-valued function klz has its imaginary part

bigger than 0 on the upper sheet. Since for both regions

of interest e < 9o and 9 >o the saddle

point occurs on the upper sheet, therefore Im klz > 0
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in the above expressions.

As can be seen from the expressions,

for >o0 , there are two waves , the first term re-

presenting the direct wave , and the second term the

inhomeneneous wave. The inhomegeneous wave decays

exponentially away from the surface. Its magnitude

is greatest on the surface where it interferes most

significantly with the direct wave. To do detection

of electromagnetic properties, we know that for two

waves with different wave vectors k and k1  , the

peaks and troughs are separated by a distance of

2ir

ka - it

On iUhe ouher iland, if we know ti

then k1 can be determined.

On-the surface,

Actually, the exact answer can be

obtained by the following steps of algebra due to

Van Der Pol. Use is made qf the following identity :

h - -e oi (r is

The integral is

I9 -s 4 K (A ) dh,
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00

=(kk h )

hi ka 'Ho"~i~, P) O t Perik

iIO /= 2 e'kl 7~ ;~

f'k ICiyor Iz

os

The various interference and radiation patterns due to different

half-space medium compositions are presented in Appendix A.
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FIGURE CAPTIONS

3.1 a. The complex ( plane for the transmitted wave

with the observation angle smaller than the

critical angle.

b. The complex ( plane for the transmitted wave

with the observation angle greater than the

critical angle.

3.2 The complex P plane for the transmitted wave with

a different branch cut, Re k z = 0, L1  is the

contour joining the branch point to the saddle point.

L2  is that part of the saddle point steepest descent

path extending from the saddle point to -io.

is that part of the saddle point steepest

descent path extending from +ioo to the saddle

point.

3.3 The complex p plane: waves in the upper medium in

the half space case. The transformation is

kp = k sin e . The branch cut is Im kz , 0 .
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Chapter 4.

GEOMETRICAL OPTICS APPROACH

4.1 TWO LAYER MEDIA

We first consider solutions to the reflection coefficients

for a two layer medium:

T E =1 1/ R - Ro

R_ -- s,, - 2 S h .

and R /so + 52z e hp i 2 CJiL)

1 + Rol R ep'i24,3d

+--, o, 1 "p i.2 , d)-

In the geometrical optics approximation,

the interference pattern is determined by three waves:

1. the direct wave from the antenna

2. the inhomogeneous wave excited by the antenna on the

surface, and

3. the wave reflected in the subsurface following ray

optics paths (Figure 4.1).
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The denominators in 1 + R and

1 + R are expanded in power series :

TE mc C r- e. Ip t2k 11m4)

RK X0 1 4II- XY,0 SO Szexp (i2 , md

The first term in the power series gives rise to the half

space solution which consists of the first two kind of

waves, both of which have beeni dealt with in the section

on half space. Mathematically, the direct wave corresponds

to the saddle point contribution, and the inhomogeneous wave

correponds to the branch point contribution due to klz*

The summation term gives rise to all reflections from

the subsurface. At each observation point, the number of

reflections from the bottom layer can be determined by

exercising ray optics. Each optical path can be traced

back to an image source.

The integral for the "reflected

terms of images" is of the following form

By rearranging terms in the integral

Tg )d kLiV D (kr)Xoi X1, R e e H0 ( r )
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If z is small, the important observation is that each

of the integrals in the summation is of the form of

the half space transmitted wave, ( that is why the half

space transmitted wave is solved first.) , where 2md

now plays the role that was played by z in the half

space transmitted wave case. The k = k, S/ trans-

f9rmation is made, the saddle point contribution is,

r, -n ko )2 o-an kr o

The saddle point is at r,, = tan'-%

The above results hold for kl d> 1 and d>> z. I'hen

o, exceeds the critical angle, then branch cut

contribution needs to be included. The branch cut is

evaluated by deforming to a steepest descent path through

the branch point. In geometrical optics approximation,

integrals along the BS's , the steepest descent paths

passing through the branch points , are usually neglected.

In deforming the branch cuts to the steepest descent path

through the branch point and before deciding that the final

contribution due to the latter is negligible, it must be

shown that the deformation is valid. If the deformation is

invalid, two alternative approaches can be taken. One

alternative is to choose another path and the other

alternative is to choose a different branch cut.
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In the complex P plane, there are two

double-valued functions, k z and k2z , and their values

are to be defined. In analogy to the transmitted wave

case, therefore, for o, < 8I'

In , < (0

for o, > 8°'

Im it >o

By the same argument as presented in the

transmitted wave case, the contribution of the Sommerfeld pole

11 - k , ), is well taken care of by the

steepest descent path BS . The net contribution is

the saddle point path p and the branch cut steepest

descent path BS. BS is to be neglected in geometrical

optics approximation.

For the double-valued function k2z'

it is to be discussed under two different cases: one

case with a good subsurface conductor, the other case

when the subsurface is a good dielectric.

When the subhurface is a aood conductor,
- 1 2

the branch point 6 2 = sin and various singularities are

shown in figure 4.2. For this case, the branch cut Im k2z = 0

is chosen because this branch cut can be detoured to BS2, the

steepest descent path passing through the branch 02 . BS2
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is of second order effect so that it is neglected in

geometrical optics approximation. With respect to k2z

there are two sheets. On the first sheet, on which the

original contour C lies, Im k2z>0 , on the bottom sheet

Im k2z(0 . Since the saddle point occurs on the first

sheet, therefore the value to be taken for k2z , in the

above expression for saddle point contribution, is such that

its imaginary part is bigger than 0. The Somnerfeld pole

P2 C = + ) , as can be seen from its

position in figure 6, is never included between the

original contour and the detoured contour. It, however,

may affect the saddle point 4 if d is getting close to

2 . In our regions of interest of big d and

moderately large p , this is never the case. Thus, the

effect of P2  can be safely disregarded. Therefore,

in sumnary, the values of double-valued functions kz

and k2z are to'be chosen in the following manner.

for oc,( . Im < 0O , Im k ,2 >o

for >0 I m/ 4m j I> '2, >O

When the subsurface is a good dielectric medium, the

various singularites and contours are shown in figure 4.3.

The following observations are made:

1. This case contrasts with the previous case in that

02 =  hn - is at a drastically different

location.

2. The branch cut Im k 2z 0 cannot be detoured to the
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steepest descent path BS2 because the detour involves

passing through regions where the exponential blows up.

It is to be emphasized that, in geometrical optics

approximation, it is the BS2 , steepest descent path

passing through branch point, that is negligible, and

not any arbitrary branch cut one defines. The pre-

scription, in this case, is to define a different

branch cut such that it can be detoured to BS2 . The

branch cut chosen is Re k2= 0 which can fulfill

the function..

3. With respect to k2z , again, there are two sheets.

On the first sheet Re k2z>0 , while on the second

sheet, Re k 2( . The branch cut Re k2z = 0

can be detoured to the steepest descent path BS2
which is neglected in geometrical optics approximation.

Since the saddle point always occur on the upper sheet

with respect to this branch cut, therefore Re k2z >0

is the value to be taken in our expression. In summary,

the values of the double-valued functions k Z and k2z

are to be chosen in the following manner:

for ,, < o , In , < o, Re k2 > 0

for > ' > Re k, > 0



4-7

The two layer case is different from the

half space case in one other important aspect. In the

half space case, the receiver is close to the surface, so

that the saddle point is always close to 2 . On the

other hand, for the two layer case , the saddle point for

the "reflected terms of images" have their saddle points

om moving along the real 3 axis as e and

2md are changed. When the saddle point om approaches the

branch point 8, the saddle point method crumbles. Using

Watson's Lemma, the criterion for the validity of the saddle

point method is found to be

I & (sin 9o -sin ( ) 2

The above condition can be achieved by

either making kI more conductive so that k has a bigger

imaginary part or by making Rm bigger. But both of

these procedures will lead to a decay of the reflections and

thus decrease the interference effects; they are largely

undesirable.

4.2 SOLUTIONS FOR THE FIELD COMPONENTS

By making full use of the mathematics
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developed in Appendix I and previous sections, the field

components have been derived. In the vicnity of the

surface, i. e. E r , f , the six electromagnetic field

components are listed in the following:

s ( - os 0 X

4- 4 Zk ' e-4 ke
2k -I  e +/,

4 f ' a p (f i sin .,' f) Sil

Xt2 rn-d m , ikR,
RIOfR12X- c ,e Rsin

4 -V T. X () - (cot () +l ()+X0 )) sin 0

WItwJ 2k, e-asfk

4T prf. (1j sec 0 cot )V Sin
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2it

JHYL m=. (4IjXO1 XliR, R e]

sing ,cin4

2r

It E 2.Lk&L + ;hip(
kimE(i.Sec 9, CtG)'

:1:2 S 5 e a] kiu.iksin{q1
ka X Yl 12 -51
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77" _ f I

+wa r ,()+ (cot 9 (9sc) + (W)) A

t e e-ae p

- J

"4 E (.+- isec -o cot G" cos

k o An Ien 7 y, e cs

Mer ( (cot Q() + QX(())] Cos

It ei k C e +i. k
Or a. (1 i sec 9. cot 9) £1

.i a e ik,Rm

whe-E P(e) M h coS 9 X, (0)

a (0) = la cos a /.(

S0) ? cos' e e)
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Seyeral points are to be noted in the above fomula:

1. The first term is the direct wave. The second term

correponds to the inhomogeneous wave. The third

term correponds to the reflected terms of the images.

2. In the first term, which is the saddle point contribut-

ion, the first order term correponds to the radiation

field.

3. At z <p , i.e. the receiver being close to the

surface, the terms X,(0) and Q (0) are much smaller

than their derivatives, X(8) , Xo ( , Q(8) , and g"(9)

This is because of the cos 0 dependence.

4.3 NUMERICAL RESULTS

The interference patterns for the six electromagnetic field

components for different configuration and media are illustrated

in Appendix B. In the diagrams, the magnetic field components

have been normalized by

IL
H.-j 4Yrnorm.

while the electric field components have been normalized by

The interference patterns may be best

understood by separating the contributions of the various waves.

Thus we depict in Figures 4.4 - 4.5, two typical field
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components Hz and E separated into the half space

solutions and the waves reflected from the first boundary.

We note that 11z together with Hp and Eo are the field

components measured broadside,.i.e. = ; while

Ez , EP and Ho are those measured endfire, i.e.

= 0. The maximum of the first reflected waves for

Hz and Ez  occur at different locations.

To explain this difference, we consider

the radiation pattern due to the dipole lying on -the

lunar surface. Under the geometrical optics approximation,

the maximum of the wave reflected from the subsurface

correponds to the angle of the Poynting power that is

radiated into the first layer. For a HED at = n/2, the

maximum power occurs at the critical angle sin-l (k/k1 )

and k l is assumed to be real. But for / = 0, we find

2 2that the maximum-occurs at an angle sin -  2n/( + n2 ) ,

where n = k/kI

The following observations are made:

1. In the direction of maximum power, not all field compon-

ents have to be maximum. e.g Hz and H have max-

imum at different locations.

2. A change of permeability from ao to/A >A. merely

changes the magnitude of k 2  If becomes

complex, then the positions of the various singular-

ities change, and the integrals must be re-evaluated.

on the new complex plane.
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3. A small loss tangent change has small effect on the

positions of peaks and troughs but changes the ampli-

tudes of the field components drastically.

The results of this thesis are now

compared with previous findings. Brekhovskih 3, in his

solution made the kind of mistake due to the wrong

approach to B+ and B as discussed in the section

on half space solution. He got the negative of the

correct answer. Thus, if one plugs in z = 0 in

.equations 19.36 and 21.14, one obtains

2 I p 2h

and thts, fails to reproduce Van Der Pol's exact answer.

The validity of the calculations of this

thesis can be verified by carrying out exact solutions

of the integrals. Tsang (1972) obtained such solutions by

numerical integration with a computer. The computation

is extremely time consuming and a single comparison is

shown. In Figure 4.6 , the exact solution may be compared

with the ,asymtotic solution under the geometrical optics

approximation. It can be seen that the geometrical

optics approximation is not good near peaks in the

interference curves. Mathematically, the peaks are

those regions where the saddle point CC,, approaches the

branch point 6o  . The saddle point method crumbles

One more point requires discussion.

In the geometrical optics approximation, BS and BS2,
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the branch pointsteepest descent paths contributions,

have been neglected. These contributions correspond

physically to the reflections of the lateral waves

from the bottom layer. Thus, it is implicitly assumed

that the energy arriving at the upper surface of

layer 1 due to the reflected lateral waves is small.

For a better approximation, these effects should be

included.

The calculated results using the geometrical optics ap-

proach are presented in Appendix B. Both a vertical magnetic

dipole and a horizontal electric dipole are considered.

Rossiter et al (1972), has performed the model tank ex-

periment with a dipole over a tank of dielectric over a perfect

conductor. The theoretical results are compared with experi-

mental findings in Figure 4.7.

Experiments have been done on glaciers

to check both theory and experiment. The Athabasca

glacier, located about 75 miles south of Jasper,

Alberta, has been thoroughly studied by others with

such methods as seismology, gravity, resistivity

measurements and drill holes. In Figure 4.8 is a

single comparison. The thickness of the ice determined

by our theoretical curves is 180 meters which agrees

very well with the thickness determined independently

from the drill hole.
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4.4 STRATIFIED MEDIUM WITH MORE THAN TWO LAYERS

Cases of more than two layers can be

dealt with in similar ways, using geometrical optics

approximation. The steps are the same: the denominators

of 1 + R and 1 - RTM are expanded and combined with

other terms in the integrand. A suitable transformation

is made e.g. khy AS  , h k, " , kpSLn

etc., depending on the predominant term in the exponential.

By expanding the denominators in the

n-layer reflection coefficient, one can get, in general,

two terms: the first being exactly the same as the

n - 1 layer solution, the second term corresponding

to the reflections generated by an additional boundary.

This, indeed, has been the case for the two layer problem

where we get back the half space solution plus the "reflect-

ed terms of images". The three layer problem is illustrated

in the following:

. Rhe 1. L

where,

R1 - 1% J
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9on s-I ,* atbm(d-d)

RL I Riz + XEX , R,, R,, e

Xis + 2

xi X R1 21 e

*f R2 +

where Ci is the binomial coefficient.
1

R I -2R, 1 - 1

If

2 2 ( da- dl)X = 2 3 R:, e

then

, X Po,, C P

. . 1 R X0, 4. X10 Ri. g e n

_v-3 2l 3md , iv ]
X1,. R, e Z C 4mal 1.
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Thus, there are three factors, viz.,

X01 X10 i- 29,onde

o x0 2 10  to to 2m-x ReC
mel b+i Po a -

2 1,, (d,_d, ) '

The first two terms combined is just the two layer solution.

To find the location of the saddle point in the last term,

we observe that the exponential is

ik + 2i k,,md, + 2 i k ,(lo (dL-d4)

so that the two equations to be solved are

2 mdba to, + 2 (p e) ( d,-d) to, 9, =p

where O1  is the saddle point in the kph= sj,4 trans-

formation, 02 is the saddle point in the =',s;n

transformation.

Note that physically, the above equations

correspond to the ray paths given rise by the multiple

reflections in geometrical optics when there are several

boundaries of reflection.
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For complex' kl and k 2 , there are

actually four ecuations and four unknowns as both the real

and imaginary parts of the equations are to be taken. For

slightly conductive k1 and k2 , the real parts are solved

first to get an approximate answer first. The imaginary

phrts are then taken itnto account and the final answers

are obtained by perturbing around the approximate answers

using Newton's method of solving roots of equation.

Either the transformation L = k, sr6

or the transformation kp = SL, S% is made, depending

on which layer is thicker. Care has also to be exercised

in choosing the values of double-valued functions, the

kz's , in the complex /3 plane as in the two layer case.
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FIGURE CAPTIONS

4.1 The image diagram for the two layer case.

4.2 The complex 8 plane for the two layer case with a good

subsurface conductor.

4.3 The complex 0 plane for the two layer case with a sub-

surface dielectric.

4.4 The half space solution for Hz and also the

first few reflected terms.

4.5 The half space solution for Ez and also the first

few reflected terms. Comparing figure 12 and 13

show that the maximum for the reflected terms

occurs at different location for the two components.

4.6 Comparison of geometrical optics approximation

with exact numerical integration.

4.7 Comparison of model tank results with geometrical

optics approximation. Dotted curve is G. O. A.

(Geometrical Optics Approximation). Solid curve

is experimental measurement. Vertical scale is 15

db. per inch.

4.8 Comparison of G. O. A. and Athabasca Glacier data

measurement. The stratified diagram gives the

parameters of the G. O. A. curve. Vertical scale is

8 db. per inch.
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Chapter 5.

MODE APPROACH

In this chapter, we use the residue series method in combi-

nation with either the modified saddle point method or the numeri-

cal method to evaluate the integrals. Each term in the residue

expansion can be attributed to a normal mode of the layered medium.

The characteristics of mode solutions are then discussed. When

the non-modal part is evaluated by the modified saddle point

method, the results are applicable to the far field regions only.

With a combination of the residue approach and the numerical

method, the results can be extended to all regions of interest.

The advantages and the disadvantages of the various limits are

also discussed. Theoretical results are illustrated for the /

various field components plotted in the form of interference

patterns.

5.1 METHODS OF APPROACH

Consider the integral

H = 8 iI£R2 (+RTE ikzz H(1) (k P)sinQ (5.1)
z  p 8ik

where Hz denotes the z-component of the magnetic 
field vector.

We use cylindrical coordinate system with z-axis perpendicular

to the surface of the stratified medium and P denotes the
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transverse distance with origin at the transmitting antenna, the

azimuthal angle * is measured with respect to the transmitting

antenna axis. The propagation vector k in the free space re-

gion has components k and kz . It denotes the antenna

strength. H 1 (k p) is the first order Hankel function of first

kind. RT E represents the reflection coefficient for TE wave

components due to the stratified medium.

For the two layer case, the reflection coefficient RTE

takes the following form

- TE 2
1- (R01

RT = [1 - - (5.2)

R 1 + RR0112exp(i2klzd)

where RTE and RTE are the usual Fresnel reflection coefficients
01 12

for TE waves at interfaces between the first and the second

boundaries.

In order to solve the integral in (5.1), we make the trans-

formation

k = ksino (5.3)

so that the two Riemann sheets due to the branch point k z is

unfolded. We then have four Riemann sheets due to

Re klz and Re k2z. In the integral (5.1), we can write

H1 (k P) = H1 (k p)e-ik p and insert an exponential factor

exp(ik p) which is in fact the factor for the Hankel function

at its asymptotic limits when k pp tends to infinity. Correspond-
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ing to this factor, there is a saddle point at 8 = 7/2. We then

detour, on the complex 8-plane, the original path of integration

to the steepest decent path passing through the saddle point.

The contribution to the integral is then composed of three parts

H = I + I + I . 1) I is 2ritimes the residue series

of the poles enclosed between the new and the old paths, 2) I b

is the branch cut contribution due to klz and k2z, and 3) I s

is the saddle point contribution. Each pole on the 0-plane can

be interpreted as a normal mode pertaining to the layer medium.

We therefore discuss our solutions separately for the modal

part corresponding to the residual series and the non-modal

part corresponding to the branch cut and the saddle point

contributions.

5.2 MODAL SOLUTIONS

In order to find the normal modes pertaining to the

layered medium, we determine the poles of the integrand.

Due to the two branch points at kp kl and k = k2 , there

are four corresponding Riemann sheets. We are interested

in the sheet where Re(klz) > 0 and Re(k2z) > 0. The poles

of the integrand are in turn deterimined by the zeros of the

TE
denominator of 1+R . Let

R1 2 R1 0 = e 0 < Re(,) < 27i (5.4)

we can write, in view of the denominator of (2)

C
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¢ + 2klzd = 2R r, = 1, 2,'. . , (5.5)

For each 9, there are two roots corresponding to Re(k z) > 0

and Pe (k z ) > 0. A pole location plot on the complex 8-plane

is illustrated in Fig. 5.1 for a layer of depth 4X with permi-

tivity 2.16(l+i0.0022) over a perfect conductor. The

original path of integration and the new steepest descent path'

are also shown on the same figure.

The poles that lie between the new and the old paths

of integration contribute to the integral in (5.1). The con-

tribution is determined by 27i times the residue series.

P i2k d (5.6)
_ X0 1 (l+R 2 e 2 kd 

(5.6)
I z H(1) (k p)eikzz

at the pole

Each term in the summation series corresponds to a normal

mode. Note that each normal mode is a cylindrical wave.

Note also that as p + c, the Hankel function has the asymptotic

limit v--e ikpp-3i

With regard to the modes that are excited by the antenna,

we have the following observations: 1) All excited modes

have Re(k ) < kl . 2) For the class of modes having Re(k ) < k,

they all have Re(kz) > 0 and Im(k z ) < 0. Physically these

modes correspond to waves leaving the surface with increasing

amplitude. We term these waves leakly modes, they can

also be called radiation modes of the structure. 3) For the

class of modes having k < Re(k ) < Re(kl), all have
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Re(k ) < 0 and Im(k z ) > 0. Physically these modes correspond

to waves coming toward the surface with increasing amplitudes

away from the surface. We term these waves creeping modes.

They are surface-like modes and are related to the waveguide

modes. 4) For the leaky modes, the transverse wave number k

has both positive real part and positive imaginary part. The

magnitude of the imaginary part is large as compared with

that of the creeping modes. The leaky modes decay very

rapidly away from the transmitter and are important only in

regions near the dipole. 5) The transverse conmponents of

the creeping modes have a positive real part and a positive

imaginary part. The creeping waves decay relatively slower

than the leaky waves with trasverse distance.

The creeping modes are the significant ones in regions far

from the transmitting antenna. 6) The number of normal modes

excited by the antenna depends on the thickness of the slab.

If the slab is sufficiently thin no mode will be excited

at all. We discuss the thin layer case in Section 5.4. The calcu-

lated results are presented in Appendix C for different layer thickness.

5.3 INTEGRATION AROUND THE SADDLE POINT

In the absence of any stratified medium, the saddle point

contribution from the transmitter corresponds to the direct

wave from the dipole. When there is stratified medium present,

the evaluation of the saddle point contribution is complicated
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by the poles in the neighborhood of the saddle point. Besides

the pole effects, the saddle point contribution is also affected

by the rapidly varying exponential exp(i2klzd) factor in the

reflection coefficient. The oscillation of this factor is fast

when d is large. We thus evaluate the saddle point contribution

for the following three cases: 1) when p >> d, we use the

ordinary saddle point method (OSP). 2) When p > d, we use

the modified saddle point method (MSP). 3) When p" d, we resort

to numerical evaluation by using the Gaussian Hermite Guadrature

(GHQ) formula.

1) In applying the ordinary saddle point method, we transform

the integral to the form

2 2m
I s L= _ (x)exp(-x2 /2)dx; Q(x) = A2mx (57)

The solution is then given by

= OSP = /2{A 0 + A2 + 3A 4 + (5.8)

-3
We include terms to p-

The integral (1) can be transformed into the form (5.7) by setting

ikp(l - sine) = x2/2 (5.9)

When p >> d, there are no poles near the saddle point and

the integrand does not oscillate very fast. Thus the

ordinary saddle point method is applicable.

2) Suppose there is a pole near the saddle point at x = x0.

0 = [i2kp(l - sine p)l/2 (5.10)
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where 8 is the location of the pole. Let
p

M lim 'x) (x - x 0 ) (5.11)
x+x0

We can write

4(x) = i(x) + (5.12)
x-xo

and

I s = Ws + Wp (5.13)

where

+i 1 Me-0/ 2 erfc(-iw0) Imw0 >0 (5.14)

WP = --- dx =
P x-x 0  2

-inMe-x./2 erfc(iw 0) Imw0 <0 (5.15)
wo = x0//2

With the effect of the poles being subtracted , Ws can be

solved asymptotically

2
Ws = i' x)e - " / 2 dx = OSP - [W ] (5.16)

where [W p] denotes Wp in inverse power series of w0 . We thus

have the solution for the modified saddle point method.

I s = MSP = OSP + poiesWp - [Wp]} (5.17)

Evidently, as w0 >> 1, the modified saddle point result is

identical to the ordinary saddle point result. The summation

in (17) extends over all poles near the saddle point. Both

-3
OSP and [W ] are worked up to p-3 terms.

3) The Gaussian Hermite quadrature formula is particularly

useful in evaluating the line integral along the steepest descent

path. Let

ikP - ik P = x(5.18)



5-8

we have

2

k = - x 2 - - ] (5.19)

And the integral can be cast into the form

I = O f(x) exp (-x 2 ) dx (5.20)

where

If T x (1 + RTE) (1k) (k p)e i k z + x2  (5.21)f(x) = -1 +i
47 k p 1 p

By the GHQ formula,

n
I = Z wif(xi) + R (5.22)

j=1

where

x. = ith zero of the Hermite polynominl Hn (x)

w. = /r 2n-I n!/n 2 [Hnl(xi)]2  (5.23)

is the weighting factor,.and

R = n! f(2n) () -0 < (5.24)

n 2n (2n)!

is the error term. For the case p < d, there are poles close

to the contour of integration, and also the integrand oscillates

rapidly due to the presence of the exp(i2klzd) factor in the

reflection coefficient. With the knowledge of the locations

of the poles, we can adjust n such that the error term Rn is /

vanishingly small.



Fig. 3 illustrates the case of a 4X dielectric layer

with permnittivity 1 = 2.16 + i0.002 ) over a perfect

reflector. The saddle point contribution is calculated by

using OSP, MSP and GHQ. It is seen that all three methods

approach same values as p > 1001. The MSP and GHQ coincides

for p > 10X. ,All three methods depart considerally for

p < 10X. Thus for p < 10X, we recommand GHQ, for 10X < p < 100X,

one can use either MSP or GHQ. For p > 100X, OSP is sufficient-

ly accurate.

5.4 INTEGRATION ALONG THE BRANCHES CUTS

There are two branch points at kp = k1 and kp = k 2 Cor-

respondingly we choose two branch cuts Re(klz) = 0 and

Re(k2z) = 0. The integrand is an even function of klz. Thus

the branch point at k1 does not contribute to the integral.

The contribution due to the branch point k2z can be calculated

by detouring the branch cut to a path parallel to the path of

the steepest descent. The result is (5.25)

X X k 2e -2 2
2 -k, d eik 2 p

It 01 10 p
b = 2T i2k d 2 2

(l+e lzd01) klzkz  p
k = k
p 2

Physically this corresponds to an inhomogeneous wave that

decays away from the bottom surface with the exponential factot

exp(-2 2 k2 d).
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Therefore, except in cases when the slab region is very

thin, the effect due to the branch point k2 is not observed

on the surface of the layered medium.

In Figure 4, we show contributions due to the branch point

for three cases. The permittivity of the first medium is

3.0(1 + i0.001)a 0 The permittivity of the second medium is

5.0(1 + i0.002)60 The depth varies from 0.05X, 0.11, 0.2X,

0.5X, 1.OX. Obviously, as the depth increases, the Ib effect

diminishes.

5.5 RESULTS AND DISCUSSIONS

In the previous three sections, we have discussed the

three separate contributions to the integral in (1). The

total field at a receiving point due to a transmitting antenna

is obtained by surning over all the three contributions. With

applications to the radio frequency interferometry in mind,

we illustrated the methods by calculating the interference pat-

terns as a function of distance from the transmitter.

When the slab is sufficiently thin, no mode is excited

and the integral is due to the saddle point and branch point k2.

Figure 5 shows interference patterns due to layers with

1 = 3.0(l+i0.001)E and depths 0.05X and O.lX on top of a
0 -

dielectric half-space with C2 = 5.0(l+i0.002)E: . The saddle point

contribution is calculated by the ordinary saddle point method.



When the layer gets thicker, modes will be excited. We show

in Figure 6 the interferenc.e patterns for the same media with

depth .2, .5 and 1 wavelength. Only 1 to 3 creeping modes

are excited. In Figure 7, we illustrated the case of a 41

layer on top of a perfect conductor. The pole location plot

has been shown in Figure 2. Because there are poles that are

quite close to the saddle point, OSP and MSP are not applicable

in near and intermediate ranges (Figure 3). The saddle point

contribution in Figure 7 has been calculated with GHQ and MSP.

GHQ result should be more accurate,especially in near field

regions.

Thus the problem of electromagnetic fields due to a hori-

zontal electric dipole antenna has been solved with the mode

approach. We conclude that in calculating the saddle point con-

tribution in the near field region, one should use the GHQ

method. In intermediate regions, and in many cases far field

zones, the MSP method whould be used when there are poles

near the saddle point. When the layer is thick, all branch point

contributions can be neglected. But when the layer is very thin,

one must take into account the branch point contribution. Al-

though the study is made for the two layer case, the approach

can be readily extended to more than two layer cases.
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FIGURE CAPTIONS

Figure 5.1 Pole plot on the complex 0-plane. The depth is

d = 4X0 , the permittivities are El = 2.160 + i0.002.

The lower half-space is a perfect reflector.

Figure 5.2 Comparison of results by OSP, MSP and GHQ. The

depth is d = 41 0 , the permittivity is E1 = 2.16(1+i0.002)

The lower half-space is a perfect reflector.

Figure 5.3 Branch cut contribution compared for layer depths 0.05X,

0.5X and 1.01. The permittivities are c1 = 3.0(l+i0.001)

and E2 = 5.0(1+i0.002). The vertical scale is 40db per

division.

Figure 5.4 Interference patterns for thin layers. There is no

pole contributions. The permitivitties are

El = 3.0(1+i0.001) and 2 = 5.0(l+i0.002). The pat-

terns are plotted for d = 0.05X and d = 0.11X. Verti-

cal scale is 20db/division.

Figure 5.5 Interference patterns for a layer with 1i = 3.0(1+i0.001)

on top of a half-space with c2 = 5.0(l+i0.002). Calcu-

lations are done for three layer depths. When d = 0.2X

and 0.5X,there is only 1 creeping mode being excited.

When d = 1X, 3 creeping modes are excited. Vertical

scale is 20db per division.
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Figure 5.6 Interference patterns calculated with both MSP and GHQ.

The depth is d = 4X and the permittivity is

l = 2.6 (+i0.0022). The subsurface is a perfect

conductor.
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Chapter 6.

NUMERICAL APPROACH

6-1 SIMPSON'S RULE

The integrals in Eqs. (1) and (2) can be readily evaluated

numerically provided they are well defined and properly conver-

gent. In the actual computation procedures, we change the Hankel

functions to Bessel functions and integrate from 0 to - instead

of from -- to +m. Although the Hankel function has a singularity

at kp = 0, the integrand as a whole is regular at that point.

For the integrands to be well defined, we must avoid the branch

point k = k. When Im(k) 3 0, the branch point does not lie

on the path of integration. If Im(k) = 0, we choose the Sommer-

feld path for the integration.

Simpson's rule is used in carrying out the numerical inte-

gration. The amount of computer time needed to obtain a given

accuracy is reduced in two ways. First, because of the presence

of the factor exp(ikzz) in the integrand, we choose a non-zero z;

the larger the z, the faster is the rate of convergence. Physically,

this choice corresponds to having the receiving point above the

surface. In the lunar experiment, the receiving antenna is

about 2 to 3 meters above ground when mounted on the Lunar

Roving Vehicle. Secondly, we vary the integration increments

Akp as a function of distance from the transmitter. The magni-

tude of Ak depends mainly on the rate of oscillation of the
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Bessel function which for large value of the argument k p is

proportional to cos k P.

For comparison with other techniques, we have evaluated

numerically the Hz-component of a two layer model with a

perfect reflector. The frequency is 8MHz which corresponds to

a free-space wavelength of X0= 37.5 meters. The layer has

dielectric constant 3.3c0, loss tangent 0.01, and a layer thick-

ness of 4A0 . The results are shown in Fig. 6. The receiving

antenna has a height of 3 meters. We used Akpp as small as

0.5 to determine the increment Ak . With a distance of p<14X0 ,p 0
Ak = 0.5/14X10 0.004. The computation is stopped when the

absolute magnitude of the integrand becomes smaller than 0.002

of the accumulative area. A typical value of the number of

increments used for computation is about 5,000. Computation

time with the IBM 360-65 was about 2 minutes per point as

shown in Figure
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6.2 FAST FOURIER TRANSFORM METHOD

Separate the integral (1) into two parts 11 and 12.

The first part corresponds to solutions in the absence of

any stratified medium, and the result is given by the iden-

tity

ikr k
I e -i p eikzz H(1) (kp) dk (6.1)

1 ap r 2 k 1 p p (6.1)

The second part includes all effects due to the reflection

coefficient RTE and after changing to Bessel functions,

iI 2

12 = dkp 4k RTE eikz J (k p)sin (6.2)

which is the integral that we want to solve with the FFT.

In applying the FFT, we use the formula (Gradshteyn and Ryzhik,

1965)

f e-kp Jl (k p)dk = (1 - (6.3)
0 p (6p + P3)

V = VR + iv I , Re {v + ip} > 0

The integral is written in the following form

1 2 f dk g(k )e- RkP J1 (k p)dk (6.4)
2 p p p
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where

g (k I RTE eikzz + VRk (6.5)
g(kp) = T kz

We can write (Cooley, 1967) for Ak 1= /2F where F is the

Nyquist frequency

N- 1
_ 1 2i2Tr fk N

g(kp) = NAk P a(f) e Pfor 0 <kp < -1)Ak

n = --2

(6.6)

where

a(f) = I g(k )e p dk

f = n/NAk o

The factor -2rf corresponds to vI in Equation (6). The right

hand side of (9) is periodic and does not tend to zero at -.

We can multiply (9) by exp(-vRk ) so that the right hand side

of (9) is sufficiently small for the range of k between

(H - 1)Ak and m. Then the final solution becomes, in view2 P
of the identity (6)

N (607)
--1
2

1 Z a(n-) [1 ,i2rn. (vR-i2rn/NAk )2+pn1
2 NAk P PNAk p NR

n=-N/2
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In choosing the increment Ak , we recall the two alternatives

suggested in Section II. If we make the upper half space

slightly conductive, which corresponds to Im k 4 0, then

we choose Ak to be smaller than the distance of the branch
P

point from the real axis on the complex k -plane. If we in-

sist on a real k, then we choose Ak such that one of the data

points coincides with the branch point and such that Akp is

smaller than the distance of the pole or branch point closest

to the real axis on the complex k -plane.

To calculate the expansion coefficient a in Equation (9) we

use the FFT algorithm in a subroutine which, for a given set of

data dk , returns the result

N-1

T =  dke N j = 0, i, ...N-1 (6.8)

n=0

We first alias the function g(k ) with period NAkp and denote

the aliased version by gp(k ). The subroutine requires data

points of g p(k p) between 0 and (N-l)Ak Note that the function

gp(k p) is equal to g(k ) between 0 and (N/2-1)Ak but gp(k)

between ( 1l)Akp and (N-l)Akp is equal to g(kp) between -(N/2) Ak

and -Ak . In the subroutine we calculateP
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N-I

n -i2 wn/N
ap(N ) = Akp / gp (£kp)e n = 0, I, ... N-1P £P=0

(6.9)

and returns the aliased version of a(n/NAk ), a p(n/Nk ).

We must be careful in translating from a (n/NAk ) to

1 1
a(n/NAk ) within the limits to in order to use

p kp p
the result (10).

We must choose NAk such that the function g(kp)

is sufficiently near zero outside the limits --NAk /2 to

NAk /2. Although mathematically, we could choose z to be

large, its value is predetermined by the experimental

arrangement. vR must not be too small. Note that v must

be greater than zero but cannot be larger than z or the ex-

ponent in (8) will cause g(k ) to diverge. We choose v = z/2.

In Figure 1 and Figure 2, we show the interference pat-

terns for Hz calculated with FFT on the IBM 360/65 computer

for a three layer and a six layer case, respectively. The

height of the observation point, z = 0.213X which corres-
0

ponds to 2 meters for a frequency of 32 MHz (values that were

used in the lunar experiment). The computation time was about

2.5 minutes for both cases. These results are to be compared

with the results obtained with Simpson's rule and shown also

in Figures 1 and 2.



6-7

6.3 DISCUSSION

We have shown that with the reflection coefficient

formulation, the problem of calculating the electromagnetic

field components due to a dipole transmitting antenna on a

stratified medium can be solved readily with the FFT algorithm

and the Simpson's rule and illustrated for Hz for a three

layer and a six layer case. See Figures 1 and 2.

In Figure 3, we compare the FFT method with results from

the geometrical optics approximation and the mode analysis.

The analytical methods consume very little time, but they are

applicable only in certain regions according to the nature of

the approximations involved. The geometrical optics result

applies when the distance is far from the transmitting antenna

and when the layer is thick and lossy. The mode method can

be applied to general cases, and is extremely useful for thin

layers. The FFT results for some general stratified

media are also presented in Figures 4 - 9.
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FIGURE CAPTIONS

Figure 1. Comparison of the direct and FFT methods for

a three layer model in which

E1 = (3.3)(1 + i0.01)E0  dl = 11

£2 = (5.0)(1 + i0.02)e0 d 2 = 21

3 = (8.0)(1 + i0.04)c 0

Vertical scale is 10 db per division.

Figure 2. Comparison of the direct and FFT methods for

a six layer model in which

I = (2.0)(1 + i0.01)E0  dl = 0.5X

E2 = (3.0)(1 + i0.02)£ 0  d2 = 11X

E3 = (4.0) (1 + i0.03)s 0  d 3 = 21

e4 = (5.0)(1 + i0.04)£ 0  d 4 = 31

E5 = (6.0)(1 + i0.05)£ 0  d 5 = 4A

e t = (8.0)(1 + i0.06)e 0

Vertical scale is 10 db per division.

Figure 3. Comparison of the FFT, Geometrical Optics (GOA),

and Mode Theory (MODE) for a two layer model in

which

£1 = 3.3(1 + i0.02)e 0  d1 = 4X

t = 6.0(1 + i0.04)E0

Vertical scale is 10 db per division.
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Chapter 7.

DISCUSSIONS

7.1 COMPARISON OF THEORETICAL SOLUTIONS

In Figure 7.1, we show Hz  as a function of distance cal-

culated on the basis of the tree different approaches for a sin-

gle model. The model consists of a single layer, 41 in thickness,

with c = 3 3e0 and tan6 = 0.01, between free space above and a

perfect conductor below. The fields are calculated for a receiver

at a height of 3 meters above surface at 8 MHz. Inspection of

the figure shows that the results from the mode analysis agree well

with those obtained from numerical integration. Note in particu-

lar that the positions of the first peaks in the geometrical optics

approximation and in the mode analysis occur at different loca-

tions. In the geometrical optics approach, if this peak is used

to predict the depth of the subsurface reflector, we see that the

mode analysis will predict a smaller depth. In the following

sections, the theoretical calculations are compared with the vari-

ous experimental results.

7.2 EXPERIMENTAL CONFIRMATION

Both the concept of this experiment and the equipment have

been tested extensively on glaciers and with laboratory-sized

scale models. Because of the variability of natural materials,

we used three different glaciers-- the Goner Glacier in Switzer-
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land, the Athabasca Glacier in Alberta, and several glaciers

that drain the Juneau, Alaska icefields. Each of these glaciers

had been studied previously. Because the shape, depth, and

physical properties of each glacier were known already, the data

obtained on the glaciers can be used to check our theoretical

expressions. Although we have collected data on several profiles

on the Gorner, about 50 profiles on the Athabasca and about 120

profiles on the Juneau glacidrs, with lengths of 1 to 11 km,

we shall cite results for only two profiles. These results

are typical of the other profiles.

The Gorner glacier, located in southern Switzerland,

has been studied for more than a century. The rather extensive

set of data includes the results of gravity, seismic, and (D.C.)

electrical resistivity surveys. The thickness and shape of the

glacier were well-determined. Our field gear was quite simple

and included a General Radio 1330A bridge oscillator for the

transmitter, a Galaxy R530 communications receiver, and homemade

antennas. The glacier was quite thick in our test area. In

Fig. 7.2 we show the interference pattern of the vertical magnetic

component for the broadside transmitting antenna at 10 MHz. The

observed peaks and troughs match very well the corresponding

features in the theoretical curve calculated for a one layer

medium with dielectric constant 3.2e 0 (1 + i0.03).

The Athabasca glacier, located about 75 miles south of Jasper,

Alberta, Canada, has been thoroughly studied- 10also by such other

methods as seismology, gravity, electrical resistivity measure-
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ments, and drill holes. The ice thicknesses measured by seismic

reflections and by direct measurement in boreholes agree quite

well and we use the profiles reported by Paterson and Savage

as standards with which to compare the thicknesses determined

from our electrical sounding technique. In figure 7.3, we show

typical results, the interference pattern of the vertical magnetic

component at 2 MHz. Note the excellent match between the experi-

ment curve and the theortical curves obtained with both the

geometrical optics approximation and the mode analysis. Our

interferornetry data indicate a depth of 180 meters which is in

aood agreement with the results of drilling, seismic and gravity

surveys.

A scaled model tank, operating at 6 GHz, was used to obtain

interference patterns for a dielectric layer with dielectric

constant 2 .1 6Eo(1 + i0.0022) over an aluminum reflector. The

general features of the model tank were described by Rossiter

et al. , and some results from the study of this particular case

for depths greater than 21 were reported there, with our mode

analysis, we are now able to match the experimental curves for

shallower depths. In fig. 7.4, we show results for layer thick-

nesses of LX and 2X. The curves are comapred with theoretical

calculations from both the geometrical optics and the mode ap-

proaches. Note specifically that for these shallow depths the

geometrical optics approximation fails to account for even the

fross features whereas the mode approach fits the experimental

data excellently.
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CONCLUSIONS

The radiation fields due to a horizontal electric dipole

laid on the surface of a stratified medium have been calculated

with three different approaches and compared with the various

experimental results. The solutions are obtained from the

refflection coefficient formulation and written in integral forms.

In the near field of the transmitting antenna, analytical methods

involving asymptotic expansion are not applicable. Direct numerical

integration of the integrals by a computer is the simplest and

the most useful. The numerical method for near field calculations

also yields accurate results and uses less computer time than far

field calculations. When the receiver is far away from the trans-

mitting antenna, the integrals can be evaluated asymptotically by

the method of steepest decents. For high lossy media and large

layer thickness, the geometical optics approach gives rather accurate

results. The interference patterns calculated from this approach

can be easily interpreted in terms of ray optics. When losses are

small and layers are thin, the mode approach is most attractive.

The results can be interpreted in terms of normal modes of the layered

medium. Although the calculations and illustrations presented

in this paper were done for the one layer and the two layer cases,

the calculations can be readily generalized to handle more layers.
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FIGURE CAPTIONS

Fig. 7.1 Comparison of theoretical results. These interference

patterns are calculated for a dielectric layer with

dielectric constant 3.3 0 (1 + i0.01) overlying a

perfect conductor. The receiver has a height of 0.08

wavelength.

Fig. 7.2 Comparison of Gorner glacier data with theoretical

results for the vertical magnetic field component Hz

at 10 MHz. The theoretical curve is calculated for

a one-layer medium with dielectirc constant 3.2co(1 + i0.03)

Fig. 7.3 A set of Athabasca data taken at 2 MHz, site 3 compared

with the theoretical results obtained with mode approach

and geometircal optics approach. The theoretical results

are calculated for a layer of ice with dielectric constant

3.3c ( 1 + i0.15) and depth 1.2X = 180meters.

Fig. 7.4 Scaled Model Tank experimental data compared with theore-

tical results obtained with the mode approach and the

geometrical optics approximation. The model consists of

a layer of oil with dielectric constant E = 2.16 0

(1 + i0.0022). The subsurface reflector is an aluminum

plate. The upper set'of curves is for a layer thickness

of LX, the lower set for 2X,X being the free space

wavelength.
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